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ABSTRACT AND SUMMARY

Two speculative oil and gas plays have been identified for the U.S. 

Geological Survey's national assessment covering the area of south-central 

and west-central New Mexico. There is currently no petroleum production 

from the assessed province. Because it overlaps two physiographic 

provinces, this assessment province is highly diverse geologically. The 

plays have favorable attributes of source and reservoir rocks and trapping 

mechanisms, plus compatible tectonic, thermal, and burial histories to 

produce commercial oil and/or gas. The first area is a highly speculative 

unconventional play exploiting coalbed methane in Upper Cretaceous strata. 

It is in the Colorado Plateau of western Cibola County on the southern 

flank of the Zuni Mountains beneath the Quaternary basalt field in North 

Plains Valley. The second area is a geographically-large conventional 

petroleum play in the Basin and Range Province of south-central New Mexico 

which encompasses the late Paleozoic Orogrande basin.

Methane sorbed in coal undergoing metamorphism can be a major resource 

of gas. In the first play, shallow, thermogenic coalbed methane has 

probably been generated within nonmarine Upper Cretaceous strata which 

contain coal lenses and stringers and other beds with disseminated carbon 

aceous material. These beds have potential for generating an in-situ gas 

resource from sub-bituminous and high-volatile C bituminous coal by means 

of devolitalization. The play predominately emphasizes Dakota, Gallup, and 

Lower Crevasse Canyon (Dilco Coal Member) Formation reservoirs.

The coalbed methane play is in an area of high present-day heat flow. 

Data from surrounding outcrops indicate that geothermal temperatures and 

hence the maturation level (based on depth of burial) since the Late 

Cretaceous has not reached the threshold for peak oil generation. 

Quaternary basalt less than 5 million years old covers the entire play



area. The coupling of the favorable stratigraphic framework containing 

known coal seams and other type III hydrocarbon material with a favorable 

thermal history makes this a potential gas-producing area.

The Orogrande basin in south-central New Mexico constitutes the second 

petroleum play; it encompasses an area of 8,800-9,000 square miles. 

Potential reservoirs are primarily Pennsylvanian and Permian, and 

secondarily Mississippian. Some structural traps may have formed as a 

result of Late Paleozoic and Laramide compression and folding, but the 

traps with greatest potential are probably the algal bioherms of Mississip 

pian through Permian age. Rocks of this time interval are about 3,500 to 

6,500 ft thick. There is also a wide range in the depths of occurrence of 

potential reservoirs, i.e. from 2,000 to 20,000 ft due to the widespread 

basin-and-range block-faulting. Factors which detract from the area's 

potential include high-angle normal faulting in Middle to Late Cenozoic 

time, some late-forming traps, and possible flushing by fresh water.

South-central New Mexico is a frontier exploration province; it has 

been restrictive because nearly 50 percent of the play is on military land. 

Incentive is thus low with respect to geophysical surveying and drilling. 

The high percentage of shows of oil and gas, given the light drilling 

activity, might indicate that economic hydrocarbons are "in the system". 

Some stratigraphic similarities exist between this mostly shallow-water 

cratonic basin and the deeper-water, petroliferous Delaware basin in 

southeastern New Mexico.



INTRODUCTION 

General Statement and Purpose

This report has been prepared for the U.S. Geological Survey's 

national petroleum assessment. The area of investigation (province #92) 

roughly includes the southwestern quadrant of New Mexico excluding Hidalgo, 

Luna, southern Grant, and southwestern Dona Ana counties (fig 1). Infor 

mation presented herein is the qualitative component of quantitative 

estimates in the national assessment. A brief geologic framework and 

history has been synthesized for each of the two plays identified in order 

that deductions can be drawn about causal relationships. Outcrop informa 

tion has been taken from the state geologic map of New Mexico (Dane and 

Bachman, 1965) and subsurface well data from the Well History Control 

System (Petroleum Information Corp, 1984). Some regional stratigraphic 

information was obtained from Frazier and Schwimmer (1987). Due to the 

highly diverse geology of the assessment area, which covers two physio 

graphic provinces (fig. 2), separate sections on the tectonic and deposi- 

tional settings are included for each of the two play areas.

Scope and Depth of Report

This report is a condensation of two detailed play analyses by the 

author. Although many of the approximately one-thousand references in my 

data base were consulted, only the essential or most representative ones 

have been cited; these provide the basic rationale, with balance among 

disciplines, consistent with resource assessment on a national scale. 

Geophysical studies supporting assessment rationale, comparative hypotheses 

on tectonic evolution, local structural complexities, and stratigraphic 

nomenclature problems have been either treated superficially or omitted.
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GENERAL TECTONIC AND DEPOSITIONAL SETTINGS 

Cretaceous Coalbed Methane Play of West-central New Mexico 

Paleozoic Era

During the Proterozoic the play area was part of the Precambrian 

highlands; during the Paleozoic Era it was the southwestern-most part of 

the Transcontinental arch (TCA), an arm of the Canadian Shield positive 

area, extending southwestward from Minnesota (fig. 3 and 4). For paleo- 

geographic examples of the arch in the play, see Eardley (1951), Stokes 

(1958), Lessentine (1965), Dott and Batten (1971), Mallory (1972), Steam 

and others (1979), Woodward and Ingersoll (1979), Dickinson (1981), Lane 

(1982), Nydegger (1982), and Kluth (1986). The TCA in northeastern Arizona 

and northwestern New Mexico is variously called the Defiance-Zuni uplift, 

plateau, highland, and arch. It is an area where thin accumulations of 

Paleozoic strata were intermittently deposited on low alluvial plains and 

in shallow epeiric seas which onlapped basement uplifts (fig. 5). These 

strata were periodically eroded creating many rapid stratigraphic pinchouts 

and disconformities surrounding the arch. Many times during the Paleozoic 

Era the area was a local source of clastic sediments (fig. 6). Late Paleo 

zoic uplift with intraplate deformation (fig. 7), is related to progressive 

collision of the North and South American plates. This rejuvenated erosion 

particularly during the Pennsylvanian Period when the Ancestral Rockies 

became a prominent tectonic feature (Kluth and Coney, 1981; Kluth, 1986). 

Permian strata, primarily red beds with some gypsum, impure carbonates, and 

eolian sandstones, generally thin or pinchout against the Zuni uplift from 

all sides (see Peterson, 1980). Late Paleozoic paleogeography alternated 

between a shallow marine shelf and a coastal plain where sabkha and fluvial 

environments prevailed. Figure 8 shows southeastward thickening of
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Permo-Pennsylvanian strata off the Zuni uplift and location of the 2,000 

foot isopach line in the play. 

Mesozoic Era

Mostly red beds accumulated during the Triassic and Jurassic periods 

in west-central New Mexico; depositional environments included 

alluvial-fluvial plains, hilly lowlands, floodplains, and shallow sandy 

seas. By Jurassic time a northwest-trending magmatic arc had developed in 

southern Arizona (fig. 9). This deformation, uplift, and heating resulted 

from subduction of the Farallon plate along the Pacific margin. 

Compressive plate motion created an expansive retroarc sedimentary basin 

(fig. 10) which extended from the northern third of Arizona and 

northwestern New Mexico into Canada (Coney, 1978; Dickinson, 1981). 

Coastal lowlands that had developed in the Early and Middle Cretaceous were 

repeatedly inundated by the Western Interior seaway to the north and 

northeast (fig. 11 and 12) during the Late Cretaceous Epoch. At this time 

the Cordilleran Mountains, a major Mesozoic sediment provenance, had been 

rising to the southwest in central Arizona and southwestern New Mexico.

Five major northeast-southwest transgressive-regressive cycles of Late 

Cretaceous age have been documented in New Mexico; the two earliest ones 

have been preserved in the rock record across the play area. Refer to the 

time-stratigraphic nomenclature chart, figure 13a and b, showing the forma 

tions deposited in the San Juan basin and noting that subsequent erosion 

has removed the youngest cycles in the southern basin. During the Late 

Cretaceous, thick, widespread marine shale was deposited in an epicontinen- 

tal sea; landward to the southwest, fluvial sandstone, paludal coals, and 

coastal plain-floodplain elastics were deposited. The reader is referred 

to the following literature for a more extensive account of Cretaceous 

stratigraphy and depositional cycles in this general area: Sears (1945),

13
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Sears and others (1941), Dane (1960), Weimer (1960), Young (1960 and 1973a, 

b), Kauffman (1969 and 1977), McGookey (1972), 0'Sullivan and others 

(1972), Molenaar (1973, 1974, 1977, and 1983a, b), Williams and Stelck 

(1975), Maxwell (1976), Cumella (1983), Hook (1983), Rice and Gautier 

(1983), Roybal and others (1987), and Kirk and others (1988).

Although major uplifts affected the Zuni area during the Late 

Paleozoic and Laramide orogeny, deformation was only mild relative to other 

areas surrounding the present-day Colorado Plateau. Northeast yielding 

(compression) of the Colorado Plateau (fig. 14) "microplate" during the 

Laramide orogeny (Woodward, 1973; Woodward and Callender, 1977), 

accompanied by clockwise rotation (Hamilton, 1981), rejuvenated and further 

established the northwest trend of the Zuni Mountains, a doubly plunging 

uplift, marking the northern limit of the play. 

Cenozoic Era

The Cenozoic history of the present-day Colorado Plateau province 

involves primarily regional but differential uplift and erosion; in 

northwestern New Mexico there was local deposition of thick Paleogene 

continental sediments, and Neogene and Quaternary normal faulting and 

erosion (see Hunt, 1956; Smith and Eaton, 1978). In the play area 

depositon of pyroclastic debris plus small-scale (?) rifting and 

northwest-trending dike emplacement characterize the Oligocene (Vaniman and 

others, 1981; Laughlin and others, 1983). Several thousand feet of 

Cretaceous and Tertiary strata were removed from west-central New Mexico 

during and since the Miocene, although some non-volcanic continental 

deposits of Eocene age remain. During this same time interval, small-scale 

(?) rifting and extrusion of basalt also occurred. The Colorado Plateau is 

bounded by zones of extensional faulting that are currently growing at the 

expense of the plateau. Helmstaedt (1974), Elston (1976), Bird (1979),
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Thrust faults of Cordilleran foldbelt

Upthrusts of Rocky Mountain foreland

Relative shift of Colorado Plateau

Principal direction of yielding of Colorado 
A Plateau

Figure 14  Generalized tectonic map showing Cordilleran fold-belt, Colorado 
Plateau and Rocky Moontain foreland. San Juan basin stippled. 
(From Woodward and Callender, 1977).
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and McGetchin and others (1979) have provided a comprehensive account of 

the volcanic history and uplift mechanisms of the Colorado Plateau as 

related to overplating, delamination, and general tectonic evolution.

A strong case can be made for the existence of a regional, northeast- 

trending lineament (Springer-Raton/Jemez lineament) passing through the 

play area. It is traceable from the Wheeler Peak area northeast of Taos, 

NM. f to the Redondo Peak/Jemez Mountains volcanic area (west of Los Alamos, 

NM.) southwest to the Mt. Taylor Volcanic Field (northeast of Grants, NM.) 

into the White Mountains Volcanic Field of east-central Arizona. This 

350-mile long lineament can be inferred from geothermal/geophysical anomaly 

mapsi state geologic maps, and satellite-imaged maps, such as by Summers 

(1965), and Kelley and others (1982). The lineament parallels the 

oft-reactivated primary fracture pattern of the Precambrian crystalline 

basement which is well documented by many studies. It also corresponds to 

a Mid-Tertiary trend of high thermal anomalies. Lambert (1966), Landwehr 

(1967), Chapin and others (1978), Lipman (1980), and National Petroleum 

Council (1980) have located this large-scale trend (fig. 15, 16, and 17).

Late Paleozoic Orogrande Play in Eastern-most Basin and Range Physiographic 

Province of South-central New Mexico 

Paleozoic Era

Precambrian crust (Mazatzal Province) consists of Early Proterozoic 

metamorphic craton intruded by Middle Proterozoic granite (Condie and 

Budding, 1979; Condie, 1981). Upper Cambrian through Middle Permian 

strata were intermittently deposited as platform cover in a shallow to 

occasionally-deep shelf environment in nonconformable contact with the 

Precambrian basement (see fig. 4 and 7). Cambrian seas generally 

transgressed northeastward across the southwestern edge of the North
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Figure 15 Generalized tectonic map of the Rio Grande. Rift and major 
crustal lineaments. (From Chapin and others, 1978).
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A 
12O-80 tn.y. 50-40 m.y.

c
7O-60 tn.y.

G
30-20 m.y.

O 
60-SO m.y.

H 
20-lOm.y.

FIGURE 16  Generalized distribution in the western United States of predominantly andesitic volcanic suites, 
inferred to be related to subduction. Distributions are based on compilations (Lipman et al., 1972; Snyder et a/., 
1976; Stewart and Carlson, 1976; Armstrong et al., 1977; Cross and Pilger, 1978) and on descriptions of local 
areas too numerous to cite individually. The base maps and diagrammatic plate geometry are from Atwater (1970) 
and Atwater and Molnar (1973). No attempt has been made to remove effects of late Cenozoic extensional and 
rotational deformation, even though such effects are probably large (Hamilton and Myers, 1966). Northeast-trending 
lines mark approximate traces of the Snake River-Yellowstone zone, the Colorado mineral belt, and the 
Springerville-Raton zone. (From Lipman, 1980).
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Figure 17 Generalized thermal trends in Rocky Mountain region showing shallow, 
hot basins, northern New Mexico. R.B.=Raton basin, P.B.=Piceance 
basin, L.B.=Laramie basin, S.P.B.=South Park basin, N.P.B.=North 
Park basin, and H.B.=Hanna basin. (From National Petroleum 
Council, 1980).
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American Craton depositing tightly-cemented, glauconitic littoral sands. 

Fossiliferous carbonates of Early Ordovician age were conformably deposited 

in warm, tropical shallow seas south of the paleo-equator; they increase 

in thickness from north to south in the play. Silurian dolomite is 1,000 

ft or more thick near El Paso and contains small bioherms (Kottlowski and 

Pray, 1967). Upper Ordovician and Lower Silurian carbonates reflect inter- 

tidal to supratidal environments. Carbonates accounted for over 2,000 ft 

of rock thickness before sea level fell and erosion reduced their present 

thickness. Conditions changed in Late Devonian time to a sediment-starved 

basin (fig. 18). Calcareous, argillaceous, and sandy sediments were laid 

down at this time; thicknesses range from a few ft in the north to 175 ft 

in the southwestern play area (Poole and others, 1967; Kottlowski, 1969a).

The Mississippian Period is characterized by deposition of fossilif- 

erous intertidal carbonates mostly in the northern part of the play to 

subtidal starved-basin argillaceous and cherty carbonates in the southern 

part; thickness increases from a zero erosional edge in the north to 

500-600 ft in the south (fig. 19, 20, and 21). Wilson (1970) believed the 

thin-bedded, silty and cherty carbonates and limey mudstones that are known 

in the Franklin, Hueco, and Sacramento Mountains, represent deep water 

conditions during the Mississippian. Regional arching (Penasco dome), a 

feature related to the Paleozoic TCA, exposed Precambrian rocks in central 

New Mexico. Thicker sedimentary sections in a possibly rapidly subsiding 

depocenter surrounded by "shelf" (indistinct shelf break according to some 

authors) lagoons in extreme south-central New Mexico, was the first 

indication of the incipient Orogrande basin principally of Pennsylvanian 

age (fig. 5, 6, and 7). Northward, Mississippian through Precambrian rocks 

are progressively overlapped by Pennsylvanian strata (see Meyer, 1966).
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Figure 19 Generalized Mississippian isopach map of southern New Mexico showing 
Penasco dome. (From Kottlowski, 1970).
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Figure 21 Detailed Mississippian isopach map of south-central New Mexico. (From Foster, 

1978a).
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Origin of the Orogrande basin, and adjacent Pedernal uplift, is 

attributable to a progressive, amagmatic collision (including subduetion) 

of the North and South American tectonic plates affecting the southeastern 

margin of the craton (Ross, 1979; Kluth and Coney, 1981; Goldstein, 1984; 

Kluth, 1986; Handschy and others, 1987). The resulting Ouachita-Marathon 

fold and thrust belt is 200-250 miles south-southeast of this petroleum 

play (fig. 5 and 7). This collision of plates also fractured the North 

American craton into a principally northwest pattern according to Burchfiel 

(1979). Such fracturing may represent a readjustment of the prevailing 

northwest and northeast pattern of basement blocks - a pattern that later 

influenced Laramide structures and loci of volcanic activity (see fig. 15).

During the Pennsylvanian Period, gradual subsidence and a close source 

of elastics from the Pedernal uplift to the east (Kottlowski, 1960 and 

1968) allowed the deposition of over 3,000 ft (fig. 22, 23, and 24) of 

alternating dark mudstone or shale, siliciclastic sandstone, limestone, 

gypsum, and biostromal-biohermal carbonates and reefs. The basin was open 

to the south but circulation was restricted enough to precipitate gypsum; 

clastic content of mostly arkose increases to the north (fig. 25). Up to 

2,000 ft of Virgilian strata account for about two-thirds of the total 

Pennsylvanian section. Maximum sedimentation rate, according to Kluth 

(1986), was somewhat less than 0.005 cm per year.

Permian sediments, 1,000-3,000 ft thick in the Orogrande basin (McKee, 

1967), were deposited in apparent angular discordance on Virgilian strata, 

at least in the eastern-central play area where they are thickest; this 

documents gradual uplift of the Pedernal positive area (fig. 26). In the 

northern and northeastern play area, a wedge of red beds (conglomerates, 

sandstones, and mudstones) of the Abo Formation was deposited as an
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Figure 22 Generalized Pennsylvanian isopach map of southern New Mexico, 
(From Kottlowski, 1970).
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Figure 24 Detailed Pennsylvania!! isopach map of south-central New Mexico. 
(From Foster, 1978a).
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NEW" MEXICO

Gypsum extent MEXICO 
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10 o 10 to so
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Figure 25 Gypsum-shale-arkose distribution map of Pennsylvanian rocks in south- 
central New Mexico. (From Kottlowski, 1963).
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alluvial-fluvial fan along coastal plains (fig. 27). Environments of 

deposition in the central to southern play are varied and include shallow 

sandy sea, sabkha, deltaic, tidal flat, and lagoonal settings. Roughly 

1,000 ft of Wolfcampian strata were deposited in the far northern part of 

the play; the Wolfcampian red beds of the Abo cover the Bursum Limestone, 

thus indicating shoaling conditions (fig. 28). By late Wolfcamp, sea level 

rose and the Pedernal uplift and paleogeographic barrier to the east was 

finally inundated by shallow epeiric seas; basin deposits included gypsum, 

siltstone, sandstone, and light- and dark-gray carbonates (see Kottlowski, 

1969b). About 1,600-2,000 ft of strata assigned to the Leonard stage are 

mapped in the south to southwestern play area.

North-south normal faulting (fig. 29) was a consequence of the 

subsidence of the Orogrande basin relative to the uplift of the Pedernal 

landmass. Movement on these faults, inherited from zones of weakness in 

the basement, was greatest from about mid-Pennsylvanian to mid-Permian 

time. This was also the time when the greatest number of structural traps 

may have formed. Intermittently reactivated Late Permian through Jurassic 

plus Laramide uplifts (Burro/Florida Islands southwest of Las Cruces, NM.) 

stripped away Upper Permian and some older strata; their total 

thicknesses, therefore, are unknown in many localities. 

Mesozoic Era and Early Tertiary

During the Triassic Period, south-central New Mexico was a low source 

area where alluvial plains received terrestrial deposits of red sandstone, 

siltstone, and shale. Today these rocks crop out only in the north to 

northeastern part of the assessment province (see Kottlowski, 1969a). 

Erosion was locally the most significant geologic process during the 

Jurassic Period in the play; regionally, large-scale tectonism, such as 

opening (rifting) of the Gulf of Mexico, had indirect inland effects, e.g.
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Figure 27 Wolfcampian paleogeography of the Orogrande basin and 
surrounding area. (From Seager and others, 1976).
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thermotectonic uplift (see fig. 9). Lower Cretaceous shales and limestones 

(0-71,000 ft thick) in the Chihuahua trough of south-central New Mexico 

(fig. 11 and 30) are not well known; they occur in isolated outcrops and 

are usually undifferentiated to formation name. The Upper Cretaceous 

depositional regime is characterized by northeast-southwest and southeast 

to northwest oscillating shorelines (Hayes, 1970; Cumella, 1983). From 

beach-to-basin and oldest-to-youngest, sandstone, shale, and thin limestone 

or calcareous shales were deposited during each transgression and then 

reversed this sequence during regressions. As shown in figure 31, 

generally from north and northeast to south and southwest, environments of 

the Upper Cretaceous facies in the play change from marine shale and 

offshore sandbars to beach sands to paludal elastics and coals to fluvial 

and coastal plain sandstones. Long periods of subsequent erosion has 

removed much of the Upper Cretaceous section.

The Cordilleran Mountains were rising in southwestern New Mexico and 

southern Arizona during the Late Cretaceous (McGookey, 1972) and were 

a source for the thick clastic deposits of southwestern United States. The 

underlying cause for intense deformation in the present-day Basin and Range 

province was the low-angle oblique subduction (underthrusting) of the 

Farallon plate beneath the southwestern continental margin and craton (see 

fig. 11 and 16). Laramide deformation in the play was probably most 

intense during the Paleocene and Eocene, a time when the magmatic arc (fig. 

5) was nearby in southwestern New Mexico (Woodward and Ingersoll, 1979). 

Within the play area, northeast Laramide compression locally resulted in 

northwest-trending thrust faults, northeast-trending right lateral faults 

intrusion of igneous rocks, and uplift of basement-cored crustal blocks by 

convergent wrenching (transpression) and tangential compression (Seager, 

1983; Seager and Mack, 1986). See Kelley and McCleary (1960), Coney
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A. LATE ALBIAN TO EARLY CENOMANIAN

C. SANTONIAN

E. LATEST CAMPANIAN

B. LATE TURONIAN

O. EARLY LATE CAMPANIAN

Figure 31 Paleogeographic maps of eastern Arizona and western New Mexico 
during Cretaceous time. (From Cumella/ 1983).
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(1972, 1976 and 1978), Horak (1975), Dickinson and Snyder (1978), Dickinson 

(1981), and Hamilton (1981) for a summary of the Laramide Orogeny in 

southwestern United States and in the general play area. 

Cenozoic Era

Post-Laramide volcanism and extension in southwestern to south-central 

New Mexico are mainly related to deep-seated heat flow; eruption patterns 

show a westward-migration. From about mid-Eocene to mid-Miocene time, the 

play area was the site of deposition of volcaniclastic, pyroclastic, and 

flow rocks (rhyolites, andesites, and basalts) which covered most of the 

Laramide structures making these structures difficult to interpret. The 

Rio Grande Rift began opening in southern New Mexico in mid-Oligocene time 

as a result of clockwise rotation of the Colorado Plateau. Figure 16a 

shows that this was also the time when the North American plate met the 

East Pacific Rise (Pacific plate). Tectonic styles along the southwestern 

continental margin shifted from compression to transform motion at the San 

Andreas Fault plate boundary with ensuing extensional faulting of the Basin 

and Range. Rifting, uplift (about 3,500 ft), and local erosion have con 

tinued from the Miocene to the present-day (rifting began to diminish in 

the Quaternary) with thick deposits of Miocene, Pliocene, and Quaternary 

alluvium, including basalt of a deep-seated origin and volcaniclastics, 

filling the grabens. Due to extension during the Late Tertiary, the 

lighter upper crustal rocks thinned causing a vertical rise in the iso 

therms of the area (fig. 32). The Diablo platform (Otero Mesa) is pres 

ently undergoing rapid uplift according to leveling surveys by Reilinger 

and others (1980).

For a more complete account of the Tertiary volcanic and tectonic 

history, the reader is referred to Cook (1969), Christiansen and Lipman 

(1972), Lipman and others (1972), Chapin and Seager (1975), Seager (1975),
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Elston (1976), Coney and Reynolds (1977), Coney (1978), Eaton (1979a, b), 

Elston and Bornhorst (1979), Riecker (1979), Stewart (1978), Seager and 

Morgan (1979), Eaton (1980), Lipman (1980), and Zoback and others (1981). 

Physiography

Except for the southeastern-most 7-9 percent of its area, the play is 

within the southern Rio Grande Rift subprovince (fig. 33 and 34) which 

includes the north-trending Jornada del Muerto, Mesilla, Hueco, and 

Tularosa intra-rift basins (Chapin, 1971). The Tularosa Basin is the 

largest of these basin, i.e. about 120 miles long and 30 miles wide; it 

occupies the eastern half of the play (described by Sandeen, 1954) and is 

adjacent to the Rocky Mountain Front (Bayer, 1983) and Great Plains prov 

ince. The Otero Mesa area of this play (southeastern sector) is part of 

the Texas foreland of the Great Plains physiographic province. Outcrops of 

the play include rocks from Proterozoic to Holocene in age. From 70 to 75 

percent of the entire play is covered by a thick, complex mix of alluvium, 

eolian dunes, and volcanic pyroclastic and flow rocks of Mid-Tertiary 

through Quaternary age (calculated from Dane and Bachman, 1965). Basalt in 

the northern Tularosa basin (Carrizozo Malpais) is as young as a thousand 

years and less than 5 million years old in the Jornada del Muerto Basin 

(Luedke and Smith, 1978). Recent gypsum dunes cover 350-400 square miles 

of the central Tularosa Basin. 

Structural Framework

Prominent geologic features surrounding and adjacent to the play 

include: a) the north-trending Pedernal uplift to the east (also called 

the Sacramento uplift, Otero uplift, and Diablo platform in its southern 

area), b) the Sierra Blanca Laramide intrusive complex to the northeast, c) 

the Estancia and Albuquerque basins to the north separated by the Chupadera 

platform, d) the west half of the Rio Grande Rift, i.e. a series of
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Figure 34 Index map of the San Andres Mountains. (From Kottlowski/ 1975)
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en echelon grabens, to the west, e) the Hueco Basin and Hueco Mountains 

uplift to the south, and f) the Salt (Brokeoff) Basin to the southeast. 

The Jornada del Muerto Basin occupies the western to northwestern part of 

the play between the San Andres Mountains and the Rio Grande River. This 

basin is a broad syncline according to Kelley and others (1982) and 

Lozinsky (1987), and is probably of Laramide origin (Kelley, 1955a; 

Chapin, 1971).

The play area has a highly-complex Phanerozoic history, experiencing 

tectonic deformation (e.g., normal, reverse, and strike-slip faulting) 

during the Paleozoic, Mesozoic, and Cenozoic eras. Following Precambrian 

deformation, each tectonic episode has left its structural imprint and 

unique geophysical signatures on the younger ones (Ramberg and Smithson, 

1975). The overall north-south structural grain of the play reflects both 

Late Paleozoic and post-Laramide deformation. The mostly north-south 

central mountain axis (concave eastward) represents the Sierra Oscura, San 

Andres, Organ, and Franklin Mountains. This axis bisects the play and 

serves as a "spine" on which the play's regional stratigraphy can be 

"attached". These narrow ranges are fault-bounded blocks exposing Pre 

cambrian through Permian rocks. The San Andres Mountains are tilted west 

exposing Precambrian rocks on their east side; the Sierra Oscura Mountains 

to the north are tilted eastward and expose Precambrian rocks on their west 

side. A series of mostly northwest-trending, transverse, normal faults cut 

these two ranges.

Structural contours on the Precambrian basement in the play reveal a 

total relief of 6,000-7,000 ft (Bayley and Muehlberger, 1968; King, 1969; 

Landes, 1970). Cone (1965) and Woodward and others (1975) have shown at 

least 10,000 ft of Precambrian relief in the Jornada del Muerto Basin. 

Detailed work by Foster (1978a), however, reveals the Tularosa Basin has a
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basement relief of about 15,000 ft and the Jornada del Muerto Basin has a 

relief of about 13,000-14,000 ft. Eroded Precambrian exposures in the 

eastern San Andres Mountains are used as the highest reference points 

(i.e., about 6,000 ft). Wells have penetrated the Precambrian surface at 

about +1,000 to +4,500 ft elevation southeast of Tularosa, NM., on the 

Otero Mesa (King and Harder, 1985). Clark (1984) has shown in an east-west 

cross-section, through the southwestern play into northwestern Texas, that 

the top elevations of the Precambrian basement in the structural basins are 

about 16,500 ft below sea level. Figure 35 illustrates in simplified 

cross-section the north-south, vertical fault system in the Tularosa and 

Jornada del Muerto basins.

Lower and Middle Paleozoic formations wedge-out from south to north in 

the northern play area (Kelley and Furlow, 1965). A subcrop map would show 

progressively older wedge-edges from northeastern Sierra and northwestern 

Otero counties into southeastern Socorro and southwestern Lincoln counties. 

Pre-Permian strata in the Tularosa basin wedge-out toward the Diablo plat 

form (fig. 36) and dip westward about 4 degrees. Petroleum migrating updip 

could be trapped by faults against adjacent blocks, e.g. the Pedernal up 

lifted block, an feature active in the Pennsylvanian and reactivated in 

Mid-Tertiary time. The Organ and San Andres block-faulted mountains are 

tilted westward with Paleozoic strata dipping into the Jornada del Muerto 

Basin (fig. 37).

The Pedernal paleogeographic landmass of Thompson (1942) between the 

play and the Delaware basin is probably the southern extension of the 

Uncompahgre uplift (part of the Ancestral Rockies) to the north in north- 

central New Mexico and southwestern Colorado (see fig. 6 and 7). In 

south-central New Mexico it is a normal-faulted Pennsylvanian uplift, 

symmetrical in plan view but steeper to the east, with a Precambrian core
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covered by Lower and Middle Permian strata (fig. 29). Drape folds (fig. 

38) occur over concealed, high-angle normal faults cutting Early Permian 

rocks (Pray, 1961 and 1977). A north-to northwest-trending anticlinorium 

in the southern Sacramento Mountains (Otero platform) has been character 

ized by Black (1976). The angular unconformity between Pennsylvanian and 

Permian strata in this area indicates these local structures were created 

during the Late Pennsylvanian; later deformation (northwest-trending 

folds) in Laramide time is also documented. These folds possess 

symmetrical, gently-dipping, and commonly doubly-plunging attributes.

The northwest-trending Chihuahua tectonic belt (Cordilleran overthrust 

of Laramide origin) may extend through the extreme southwestern corner of 

this play (e.g., see Dickinson and Snyder, 1978; Woodward and Duchene, 

1981 and 1982; and, Seager and Mack, 1986), but it may have only an 

indirect relationship to the play's petroleum potential. On the other 

hand, Laramide overthrusts in the Mesilla basin may trap Paleozoic oil and 

gas but insufficient subsurface data exists to evaluate this concept. The 

Deming Axis/Texas Lineament (fig. 39) is a megashear zone and series of 

uplifts which occupies essentially the same geographic position as the 

Chihuahua tectonic belt (fig. 40) but owes its origin to Precambrian 

through Paleozoic and even Laramide tectonics (e.g., see Turner, 1962; 

Muehlberger, 1965; Moody, 1966; Sales, 1968; Fischer and Judson, 1975; 

Lovejoy, 1975; Woodward 1976; Muehlberger, 1980; Baars and Stevenson, 

1982). Laramide thrust sheets moved to the northeast; dexteral shearing 

or wrench faulting are manifested by northeast trends (fig. 41).

Plutons of Laramide origin   probably early Tertiary but possibly 

Oligocene age according to some workers   have intruded the Dona Ana 

Mountains, the Organ Mountains, the northern Hueco Mountains, the Jarilla 

Mountains, the Cornudas Mountains, the southern and northern San Andres

54



W
E

S
T

S
ac

ra
m

en
to

 
M

ou
nt

ai
ns

C
A

S
T

S
on

 
A

n
d

rt
t

So
n 

A
nd

rc
s 

fm
. 

(P
tr

m
io

n
)

'-*
£ 

-9
00

0'

H
o

ld
tr

 
fm

. 
(P

tn
r.

sy
lv

o
n

io
n

)
B

tt
m

o
n

 (
rn

. 
(P

tn
n

sy
lv

o
n

io
n

)

40
00

1- 
rS

T

U
p

p
er

 
M

is
s.

 f
m

s.
_ 

. 
, 

Lo
w

er
 

M
is

*,
 f

m
s 

D
ev

o
n

io
n

 f
m

s.
V

o
lm

o
n

l 
ft

 F
us

se
lm

on
 

fm
s.

 
(O

rd
o

vi
ci

o
n

- 
S

ilu
n

o
n

)

E
M

on
lo

yo
 

fm
. 

(O
rd

o
vi

ci
o

n
) 

Il
is

s
-C

IP
o

s
o

 
fm

s.
 (

O
rd

o
vi

ci
o

n
)

G
o

b
b

le
r 

fm
 

(P
tn

n
sy

lv
o

n
io

n
)

Tu
 I a

ro
se

 
B

as
in

50
00

*'
'V

 
- 
-
-

4
0

0
 O

1

30
00

'

H
o
ri
zo

n
ta

l 
sc

al
e 

in
 m

ile
s 

2
3

Fi
gu

re
 3

8 
Di

ag
ra

mm
at

ic
 c

ro
ss
-s
ec
ti
on
 o

f 
th
e 

ce
nt
ra
l 

pa
rt
 o

f 
th
e 

Sa
cr
am
en
to
 M
ou
nt
ai
ns
 E

sc
ar

pm
en

t.
 

(F
ro

m 
Pr
ay
, 

19
61

).



Ul cr>

Fi
gu

re
 
3
9
 
M
a
p
 s

ho
wi
ng
 D

em
in

g 
ax
is
 
(?
 
Te
xa
s 

li
ne

am
en

t)
 
an

d 
tr
en
d 

of
 L

ar
am

id
e 

up
li

ft
s.

 
(F
ro
m 

Tu
rn

er
/ 

19
62
)



u
i

/ 
w

ru
ir

 i
 
/ 

>
t-

/ 
/
 

/x
-^

T
\^

s
 

/B
VA

.C
*.

-.
/.,

f.M
.c?

A/.
y*

\x
. 

I
t
 

A
 

4
h

 
I 

t
 I

 
 
 
 
"
 

X

W
M

^.
- 

- 
 -

  
s 

x 
\.

 .
..
..
..
. 

..
4

U
P

LI
F

T
;\ 

\.X
'v

J8
;V

/;1
-

O
 1

1 
~y

 
V

.'.
'.'

-'.
v.

v.
V

'* 
^A

M
AT

AD
O

I 
o
/
 

, '
/'.

' ' 
 .v

::
\\

 <
A

* 
A

 A
RC

H

BA
SI

N 
-V

/D
U

R
O

 
BA

SI
N

/.'
O

ir
vf

t 
 » 

v 
  

.  
 

. 
..

..
..

 .
1 

^ 
/.

 W
C.

UW
W

M
I

^
^
 ^

ii
t^

^
r^

-e
^

7
-S

\ 
U

P
L

IF
T

S
 

W
IT

H
 

" 
' 

"J
 P

R
E

C
A

M
B

R
IA

N
 C

O
R

C
S

V
V

.C
H

IH
U

A
H

U
A

'. 
V-

;::
B

A
S

IN
;"

Fi
gu
re
 4

0  
 Ge
ne

ra
li

ze
d 

te
ct
on
ic
 m
ap
 o
f 
Ne
w 
Me

xi
co

 a
nd
 A
ri

zo
na

 s
ho

wi
ng

 a
re

a 
Te

rt
ia

ry
 t

hr
us
ts
 a

t 
so

ut
he

rn
mo

st
 s

id
e 

of
 t

he
 O

ro
gr
an
de
 b

as
in

. 
(F
ro
m 
Ro
ss
 a

nd
 R

os
s,
 
19
86
).

of



(J) C
O

P
ec

os
"b

oc
kl

e»
"o

f 
K

el
le

y 
(1

97
1)

W
re

nc
h 

fo
u

ll 
zo

ne
 o

f 
C

ho
pi

n 
on

d
C

ot
 h

er
 ( 

19
81

 )
<

*&
' /$

$
ff
r

.'
s
e
t'

u
p

lif
ts

 
on

d 
o

r
rt

g
io

n
o
l 

vo
v«

rt
h

ru
ili

i J

Fi
gu

re
 4

1-
M

ap
 s

ho
w

in
g 

m
aj

or
 L

ar
am

id
e 

st
ru

ct
ur

al
 f

ea
tu

re
s 

in
 w

es
te

rn
 T

ex
as

, n
or

th
er

n 
C

hi
hu

ah
ua

, s
ou

th
er

n 
N

ew
 M

ex
ic

o,
 a

nd
 

so
ut

he
as

te
rn

 A
riz

on
a.

 U
pl

ift
s:

 A
, A

pa
ch

e 
up

lif
t; 

S,
 S

ie
rr

a 
up

lif
t; 

R
G

, R
io

 G
ra

nd
e 

up
lif

t; 
LB

, L
ar

am
id

e 
B

ur
ro

 u
pl

ift
; 

H
, H

id
al

go
 u

pl
ift

, U
D

, 
up

lif
t o

f 
D

av
is

 (
19

79
). 

B
as

in
s:

 B
b,

 B
ac

a 
ba

si
n;

 C
Jb

, C
ar

th
ag

e-
L

a 
Jo

ya
 b

as
in

; S
Bb

, S
ie

rr
a 

B
la

nc
a 

ba
si

n;
 L

R
b,

 L
ov

e 
R

an
ch

 b
as

in
; 

Pb
, P

ot
ril

lo
 

ba
si

n;
 R

b,
 R

in
gb

on
e 

ba
si

n.
 

(F
ro

m
 S

ea
ge

r 
an

d 
M

ac
k,

 
19

86
).



Mountains, and the Oscura-Carrizozo-Coyote area (Dane and Bachman, 1965). 

See Kelley and others (1982) for satellite photomap and other generalized 

tectonic, geologic (with stratigraphic columns and cross-sections), and 

physiographic maps. 

Geophysical Studies

Geophysical information is exceptionally critical to an interpretation 

of the subsurface where drilling and outcrop data are sparse. However, a 

systematic review of geophysical data is beyond the scope of this play 

analysis. Some of the general gravity, seismic, and magnetic literature 

for such a review includes the following: Decker and others (1975), Decker 

and Smithson (1975), Padovani and Carter (1977), Aiken and others (1978), 

Healey and others (1978), Ramberg and others (1978), Cook and others 

(1979), Thompson and Zoback (1979), Hildenbrand and others (1982), Zietz 

(1982), Cordell (1983), Keller and Cordell (1983), Keller and others 

(1984), Jachens and others (1985), and Simpson and others (1986). Thompson 

and Burke (1974) have summarized the present geophysical framework of the 

Basin and Range province thusly: "The regional geophysical data put many 

useful constraints on speculations about the fundamental tectonic processes 

of the Basin and Range province. Among these data the heat flow is 

central; the volcanism, thin crust, low mantle velocity, accentuated low 

velocity zone, generally high elevation, subdued magnetic anomalies, high 

electrical conductivity, and great breadth of the seismically active zone 

can logically be associated with high temperatures and high heat flow."

PETROLEUM PLAY IDENTIFICATION 

Cretaceous Coalbed Methane Play 

Location, Size, and Land Status

The coalbed methane play is within the stable craton near the outer
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edge of the southeastern quadrant in the Colorado Plateau physiographic 

province (Fenneman, 1928; Hunt, 1956; Thornbury, 1965; Grose, 1972; 

Baars, 1983; and, Bayer, 1983). Specifically, it is on the Mogollon 

Slope of west-central New Mexico (Kelley, 1955b) in western Cibola 

(formerly named Valencia) County (fig. 2). The area evaluated is between 

the Gallup sag to the west-northwest and the Acoma sag to the east. North 

of the play is the Zuni Mountains positive area - an asymmetric, basement- 

cored northwest-trending anticline; these mountains more-or-less mark the 

southern terminous of the San Juan basin. Landes (1970) and Molenaar 

(1974, 1977) considered the play area to be part of the Zuni basin, whereas 

Chapin and Gather (1981) and Gather and Johnson (1984) referred to it as 

part of the Baca basin of Early Tertiary age.

The play size is between 500 and 550 square miles; boundaries lie 

approximately within 107° 55' to 108° 35' long, and 34° 40' to 34° 55' lat. 

The area is within North Plains structural valley. Basalt that covers the 

valley is called the Zuni-Bandera Lava Field. Land classification types 

include private (44 percent), Bureau of Land Management (25 percent), Ramah 

Indian Reservation (18 percent), and state-owned (13 percent). 

Basis of Play

Upper Cretaceous outcrops of predominately Dakota Sandstone, Mancos 

Shale, Gallup Sandstone, and Mesaverde Group border the play on the east 

(Cebollita Mesa, also spelled Cebolleta), west, and southwest and have 

composite thicknesses up to 2,500 ft (McGookey, 1972; Seyfert and Sirkin, 

1973); 1,000-2,000 ft is a reasonable estimate for the play area. The 

Dakota sandstone and Mancos Shale probably exist beneath the basalt, but it 

is not known with any certainty how thick the carbonaceous-rich Mesaverde 

Group might be.

Beneath the Cretaceous rocks the stratigraphic section is relatively
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thin and consists of up to 3,500-4,000 ft of Permian, Triassic, and 

Jurassic strata resting unconformably on Precambrian basement. These 

pre-Cretaceous rocks are exposed north of the play on the south flank of 

the Zuni uplift area. The total thickness of the stratigraphic section in 

the play area is unknown due to its concealment beneath basalt and a lack 

of borehole information, but it is estimated to be 4,500-6,000 ft.

Relatively shallow coalbed methane has probably been thermogenically 

generated within the nonmarine Upper Cretaceous strata which contain coal 

lenses and stringers and other beds with disseminated but abundantly- 

carbonaceous material. Although some upward migration of non-associated 

gas may have occurred, for this assessment the reservoir rocks are con 

sidered to be the same units as the source rocks. Methane is adsorbed on 

surfaces and within the coal microstructure (cleat systems). Several 

12-inch and possibly thicker coal lenses are inferred to be present in the 

middle to lower part of the Dakota Sandstone deposited in a delta plain 

environment. Also, the Gallup Sandstone and the Dilco Member of the 

Crevasse Canyon Formation consist of carbonaceous shale with intercalated 

coaly units. (The Moreno Hill Formation coal seams described by Roybal and 

Campbell, 1982, in the Fence Lake area are stratigraphically above the 

Atarque Sandstone and below the Crevasse Canyon Formation). A total of 

50-75 ft of coal plus carbonaceous elastics of Late Cretaceous age are most 

likely present in these three stratigraphic units. Although 200-300 ft of 

the entire Cretaceous section may contain significant amounts of organic 

matter of the terrestrial humic type III in clastic units, the play 

emphasizes the Dakota, Gallup, and Crevasse Canyon coaly reservoirs. A 

stratigraphic column and cross-section of Upper Cretaceous coal-bearing 

strata in the Zuni basin are shown in figure 42(a,b).
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Figure 42a Composite stratigraphic column of the Zuni basin, 
others, 1987).

(From Roybal and
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Hydrocarbon Occurrence

The San Juan basin north of this play is a prolific coalbed methane 

producer with an estimated in-place gas resource of 2-31 trillion cubic 

feet (TCP) (Shirley, 1986), and 50 TCP according to Kelso and others 

(1988); see fig. 43. There the Dakota Sandstone is a major non-associated 

gas producer (Deischl, 1973; Arnold and others, 1976; Kottlowski, 1977; 

Parker and others, 1977). Fassett (1983) calculated the Dakota Sandstone 

in the San Juan basin has produced about 3.63 TCP of dry gas and 44.3 

billion cubic feet (BCF) of "casinghead" (condensate) gas through 1982. 

Cumulative production through 1985 has been 4.00 TCP. Production is mainly 

from the central, deeper, and hence more mature part of the San Juan basin. 

Fassett (1983) also determined that through 1982 the Gallup Sandstone pro 

duced over 67 BCF of dry gas in the basin. Other productive formations 

higher in the stratigraphic section are not present in this play area. 

Geothermal Maturity

The coalbed methane play is an area of high present-day heat flow   

the key ingredient responsible for generating the in-situ gas resource from 

sub-bituminous and lesser amounts of high-volatile bituminous-C coal. See 

Fieldner and others (1936) and Shomaker and others (1971) for analyses of 

northwestern New Mexico coals. Geothermal data from surrounding outcrops 

indicate the maturation level (based on depth of burial) since the Late 

Cretaceous has barely reached the threshold for oil generation (fig. 44). 

Quaternary basalt less than 5 my old, and possibly as young as 1,000 years 

(Nicols, 1946; Luedke and Smith, 1984), covers the entire play area.

Maximum generation of gas is assumed to be contemporaneous with the 

intrusion and extrusion of basalt during the last five million years, but 

more probably during the last 1-2 million years. Although the Cretaceous 

rocks are immature (R = 0.48-0.60 percent), i.e. slightly below the
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VITRINITE REFLECTANCE 
EQUIVALENCE, in %

3.6-4.2

Figure 44 Preliminary surface thermal maturity map of Paleozoic and Mesozoic strata 
in western New Mexico. Higher values near plutons and lower values over 
alluvial basins have not been reconciled.
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KILOMETERS

<O

4o  Map of the western United States showing heat-flow contours (in heat-flow units. HFU. 1 HFU 
4T.8 mWm~2 ). heat-flow provinces, and major physiographic divisions (SRP: Snake River Plain; BMH: Battle 

Mountain High; EL; Eureka LoVv; RGR: Rio Grande Ritt Zone; Y: Yellowstone; LV: Long Valley).

(From Sass and others, 1981).
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110° IO5°

KEY

< O.99 HFU 

| | 1.0-1.49 HFU 

1.5-1.99 HFU

2.0-299 HFU 

>3.0 HFU

35° -

30°  

I2O° IO5'

Figure 46 Energy-flux map of the Western United States 
heat-flow units. (From Blackwell, 1978).

Contours are in
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KNOWN GEOTHERMAL 
RESOURCE AREAS (KGRA'S)

1. Baca Location 1 KGRA
2. San YsidroKGRA
3. Socorro Peak KGRA
4. Lower Frisco Hot Springs KGRA
5. Gila Hot Springs KGRA
6. Lightning Dock KGRA
7. Radium Springs KGRA
8. Kilbourne Hole KGRA

Heat Flow Unit
Isotherm (Reiter, 
Others, 1975)

Lands Classified 
for Geothermal 
Resources (Godwin, 
Others, 1971)

Hot Springs/Wells, 
Extensive Hydro- 
the rma 1 Anoma 1 y 
(Summers, 1972)

O VT E R o ̂

Figure 47 Index map of New Mexico showing geothermal resource areas and heat flow 
unit isotherms. (From Grant, 1978).
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threshold for heavy oil generation, present-day heat flow is relatively 

high (fig. 45-49). These rocks are therefore conceivably generating 

methane at present. Heat flow units (HFU) in and surrounding the play 

generally occur in the range between 2.35 and 3.0 HFUs (Reiter and others, 

1975; Grim, 1977; Lachenbruch and Sass, 1977; Edwards and others, 1978; 

Grant (1978), Grim and Berry, 1979; Reiter and Shearer, 1979; Ikelman and 

Theberge, 1980; Sass and others, 1981; Kron and Stix, 1982; and, 

Eggleston and Reiter, 1984). For reference, the mean surface heat flow of 

the Colorado Plateau is 1.62 HFU according to Crough and Thompson (1976), 

1.3 HFU according to Keller and others (1979), and about 1.56 HFU in the 

non-volcanic areas of the province according to Reiter and Mansure (1983).

Geothermal gradients are mapped as being 2.0°F/100 ft. (36.5°C/km) by 

DeFord and Kehle (1976) and Swanberg and others (1977). Nathenson and 

others (1983) indicate higher values of 2.2-2.5°F/100 ft. (40-45°C/km). 

A few miles west of the play in New Mexico the highest value, according to 

Kron and Stix (1982), is 3.7°F/100 ft. (67°C/km). The origin of the basalt 

is deep-seated from the lower crust or upper mantle. For this reason, the 

extrusive process could locally maintain relatively high temperatures, 

especially along a network of fractures or conduits within the valley.

A wide array of thermal phenomena and anomalous thermal trends sur 

round the play area. A known geothermal area is documented due west of the 

play in New Mexico (Arnold and Hill, 1981). In 1982 Phillips Petroleum 

Company drilled eleven geothermal wells near the Arizona-New Mexico border 

to exploit this energy resource. Abundant volcaniclastic and flow rocks, 

plus a volcanic maare (tuff ring of Aubele and others, 1976) at Salt Lake, 

NM., are two types of volcanic features south to southwest of the play, 

respectively. Mafic intrusions are scattered occurrences immediately south 

of the play. Although there is no direct comparison to known source rocks
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in the San Juan basin, this play does have similarities to that basin's 

petroliferous reservoirs of Upper Cretaceous age. San Juan basin source 

rocks produce large volumes of oil and particularly gas, in part due to 

deeper burial and, therefore, a more favorable geothermal maturity. 

Source Rocks, Reservoir Rocks, Traps and Seals

The primary source beds are the coals with secondary coaly clastic 

units of the Dakota Sandstone. The entire lower part of the Upper Creta 

ceous section in the play contains approximately 75 ft of coal and very 

carbonaceous elastics, i.e. conglomerate, sandstone, siltstone, and shale 

containing black powdery coalified material. These beds serve as both 

source and reservoir rocks for methane. The coal and disseminated coal- 

like material found in the known coalbed methane reservoir beds of north 

west New Mexico include high-volatile bituminous "C" and sub-bituminous 

types. A small increase in temperature of about 10-20 C, is capable of 

converting sub-bituminous coal to high-volatile coal with a large release 

of methane. Several tongues of the Mancos Shale probably act as effective 

seals; however, the mechanism for trapping is adsorption within the coal 

and conventional gas-trap structures and seals are thus unnecessary.

Three coal fields within the Mesaverde Group surround this play (fig. 

50): the Gallup-Zuni field to the west and northwest, the Salt Lake field 

to the southwest, and the Datil Mountain field to the east and southeast 

(See Ellis, 1936; Trumbull, 1960; Kottlowski and Beaumont, 1965; 

Bieberman and Weber, 1974; Kottlowski and others, 1974; U.S. Geological 

Survey, 1977; Tabet and Frost, 1978; Logsdon, 1982; Roybal and Campbell, 

1982; McLellan and others, 1983; and, Cavaroc and Floras, 1984). 

Local Structure

The fracture pattern in the Zuni uplift is northwest and northeast 

(Kelley and Clinton, 1960). Precambrian basement rises from about +2,000
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ft to about +4,000 ft northward within the play area (Hunt, 1956; Cone, 

1965; Bayley and Muehlberger, 1968; King, 1969; and, Kleinkopf, 1972). 

The exposed core of the Zuni anticline is Precambrian granite dated at 

about 1.5 billion years (Condie, 1981). Although local fold structures 

undoubtedly exist, the strata superjacent to the Precambrian in the play 

are for the most part undeformed except for dipping 1-2 degrees south to 

southwesterly away from the Zuni Mountains as determined by structural 

contours of the Dakota Sandstone (Thaden and Zech, 1984). Faults in the 

play may be hidden below the basalt but some Recent, normal, en echelon 

faults have been mapped in the Cretaceous rocks along the eastern edge and 

in Cebollita Mesa; Gather and Johnson (1984) illustrate a northeast- 

trending fracture zone (Hickman fracture zone) in the same area (fig. 51). 

Other normal faults are common in the eastern Zuni Mountains. Most of 

these faults parallel the north-northeast axis of North Plains Valley and a 

few are inferred to have a small right-lateral component (Maxwell, 1986).

The North Plains Valley, containing voluminous basalt, is probably an 

asymmetrical (deeper to the east), small-scale (?) rift basin or rotated 

block (north side up and south side down) of (?) Miocene or younger age. 

The basalt on top Cebollita Mesa to the east is (?) Miocene or (?) Pliocene 

(Dane and Bachman, 1965) indicating that some extrusions may have occurred 

contemporaneously with graben development or block rotation. As much as 

1,500 ft of displacement, increasing southward, is suspected on the east 

side of the graben. Further filling of North Plains Valley with olivine 

tholeiitic and alkalic olivine basalts occurred during Holocene time 

(Laughlin and others, 1972). Enough mafic rock is present within the 

valley to manifest a northeast-trending positive gravity anomaly (Bouguer 

and isostatic residual) over the North Plains valley (Aiken and others, 

1978; Keller and Cordell, 1983; Jachens and others, 1985). Similar
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trends are seen on aer©magnetic maps (e.g., Zietz, 1982; Cordell, 1983), 

but these are less well defined.

The axis of the (?) rift zone appears to parallel and perhaps be 

related to the Rio Grande Rift in eastern Valencia County. The Rio Grande 

Rift, a major intraplate boundary, began opening in central New Mexico 

during Oligocene time in response to clockwise rotation of the Colorado 

Plateau. To analyze whether the fault structures of this play are inher 

ited from zones of weakness in the Precambrian basement, or whether they 

are unique products of Cenozoic tectonics, or both, is tangential to this 

report. Trapping of coalbed methane, however, for all practical intent is 

independent of local structure in the geologic framework of this play. 

Depth of Occurrence

In the play, maximum depths for reservoirs of the Dakota Sandstone 

range from 200-1,000 ft near the north edge, 750-1250 ft in the southwest 

corner, and up to 1,500-2,000 ft elsewhere. The Cretaceous section rises 

and thins towards the Zuni Mountains where some small and isolated outcrops 

of Permian and probably Triassic age are found as "windows" in the basalt. 

Potential of Coalbed Methane Resource

The methane content of other high-volatile C coal in New Mexico is 

about 72 CFG/short ton. Twenty-five to 50 ft of coal plus coal-equiva 

lent thickness is assumed in this assessment. Because the subsurface 

thermal regime of west-central New Mexico is not completely understood, the 

inferred extent of producible Upper Cretaceous reservoirs may actually be 

5-10 miles east and west of the currently outlined play. Sparcity of heat 

flow data, however, limits the play boundary to the area capped by basalt. 

Shirley (1986) noted that some single coalbed methane wells in the San Juan 

basin, producing from the Upper Cretaceous Fruitland Formation about 3,000 

ft deep, have already produced over 1 billion cubic feet each in the last
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30 years and are still active. Given certain basic geologic conditions, 

such as permeability, the amount of gas as a total resource can also be 

estimated quantitatively using PC computer software (Downey, 1987). 

Exploration Status

The area of this play, plus the area 10-15 miles outward from this 

play, is the least drilled area of the northwestern quadrant of New Mexico. 

About ten boreholes (Petroleum Information, Corp., 1984) account for all 

drilling in a 2,300 square mile area. 

Pertinent Literature on Coalbed Methane Research and Resource Methodology

Coalbed methane is an important unconventional petroleum resource in 

the United States that has received considerable emphasis and subsequent 

research since the early- to mid-1970's. This emphasis has included coal 

sampling procedures, laboratory analyses of gas content and desorption, and 

the methodology of resource assessment with quantitative examples. For the 

interested reader, some of the pertinent literature concerning San Juan 

basin natural gas and coalbed methane, plus other resource models and 

methodology, is listed here: Kottlowski and Beaumont (1965), Juntgen and 

Karweil (1966), Cervik (1969), Fassett and Hinds (1971), Shomaker and 

others (1971), Kirn (1974), Kottlowski and others (1974), Ruppel and others 

(1974), Averitt (1975), McCulloch and others (1975), McCulloch and Diamond 

(1976), Irani and others (1977), Kirn (1977), McCulloch (1977), Murray and 

others (1977), Shomaker and Whyte (1977), Tabet (1977), Weimer (1977), Curl 

(1978), Fender and Murray (1978), Kirn (1978), Barren and others (1980), 

Kelso and others (1980), Lent (1980), Murray (1980), Tremain (1980), Walker 

(1980), Boreck and others (1981), Diamond and Levine (1981), Murray (1981), 

Tremain and others (1981), TRW Energy Engineering Division (1981), Williams 

and Smith (1981), Choate and Rightmire (1982), Diamond (1982), Merry and 

Larsen (1982), Aitken (1983), Choate (1983), Wood and others (1983), Choate
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and others (1984), Eddy (1984), Meissner (1984), Meissner and others

(1984), Rightmire (1984), Tremain (1984), Ward (1984), Jones and others

(1985), Stricker and Anderson (1985), Choate and others (1986), Molnia and 

others (1986), Shirley (1986), Fassett (1988), and Kelso and others (1988).

Late Paleozoic Orogrande Basin Play 

Location, Size, and Land Status

The Orogrande basin is a large play, entirely within New Mexico, 

covering 9,975-10,250 square miles mostly in the Rio Grande Rift province 

of south-central New Mexico (fig. 2). However, 11-12 percent of the play 

area (about 1,150 square miles) has very low potential because the reser 

voirs of Mississippian through Permian age which have potential elswehere 

in the play, are either exposed at the surface or have been eroded away, 

such as in the San Andres Mountains (fig. 34). Approximate bounding longi 

tudes are 105°30' to 107°00' east to west and latitudes 32°00' to 34°00' 

south to north. Parts of five counties are within the area outlined: 

Otero, Dona Ana, Sierra, Lincoln, and Socorro. White Sands National Monu 

ment, San Andres National Wildlife Reserve, White Sands Missile Range, and 

Fort Bliss Military Reservation occupy the central to south-central portion 

of the area.

Land classification types and their estimated areas within the 

assessed area include: military (48 percent), Bureau of Land Management, 

i.e. public (30 percent), private (7 percent), state (7 percent), national 

monument (2 percent), wildlife reserves (2 percent), grant lands (2 per 

cent), and miscellaneous (2 percent). Land status has been estimated from 

numerous Bureau of Land Management maps published in 1981 and 1982. 

Basis of Play

Foster and Grant (1974) have outlined favorable exploration areas and
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reservoir zones in New Mexico. Kottlowski's (1977) rendition of their map 

(fig. 52) indicates areas of "good", "medium", and "fair" potential 

(classes #2, #3, and #4, respectively) for various sectors in the play in 

strata of Pennsylvanian age, excluding the uplifted, mountainous, north- 

south sector from roughly east-central Socorro County through the San 

Andres Mountains to the Organ Mountains and southeastern-most Dona Ana 

County, New Mexico, and northwestern-most Hudspeth County, Texas. About 

half of New Mexico was considered by these authors to have no, or very low, 

petroleum potential, and about 15 percent (San Juan and Delaware basins) 

was rated high potential, i.e. class #1. Ordovician, Silurian, Mississip- 

pian, and Permian strata also have favorable attributes in the assessed 

province, but their areas of potential are much less evenly distributed 

than for the Pennsylvanian System.

In the Orogrande basin, there is a close association within the 

Pennsylvanian section of alternating, or possibly reciprocal cyclic 

(Wilson, 1967 and 1972a, b; LeMone, 1985; Bowsher, 1986), porous, and 

permeable calcarenites, quartz sandstones, carbonate coquinas, algal reefs, 

carbonaceous shales, and dark fetid and petroliferous limestones. Foster 

(1978a) stated, "It can be assumed that oil and gas were present in the 

area prior to the Laramide development of the Basin-and-Range structural 

province. Under the conditions that existed into Cretaceous time, it would 

be unique to have a sequence of source and reservoir rocks of the thickness 

and extent present in south central New Mexico and not to have substantial 

deposits of oil and gas." Furthermore, Thompson and others (1978) have 

ranked the Magdalena Group of Pennsylvanian age in the Orogrande basin the 

highest priority of thirteen exploration targets of south-central and 

southwestern New Mexico with respect to their potential as source and 

reservoir rocks.
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provinces and areas #2-4 have exploration potential with #2 being 
highest. (From Kottlowski, 1977).
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Pennsylvanian strata deposited in the shallow (probably 200 ft maximum 

depth), gradually-subsiding Orogrande basin are up to 3,250 ft thick 

(Kottlowski, 1965) in the center of the present-day, asymmetric Tularosa 

Basin (fig. 24). These strata thin in all directions to about 1,000-1,500 

ft at the edge of the play (Kottlowski, 1962; Foster, 1978a; Connolly and 

Stanton, 1986; Peterson and Smith, 1986; and Ross and Ross, 1986), except 

in the southeastern part (Otero platform) where they are very thin to 

absent. For this latter area, fetid, oolitic and biostromal carbonates of 

Permian age, occurring as shallow and fractured reservoirs, have the 

greatest petroleum potential.

The total thickness of Paleozoic strata is from about 4,000 to 8,500 

ft in the play (fig. 53). Foster and Grant (1974) have estimated the 

maximum thicknesses of the sedimentary sections, Precambrian to Recent, in 

several areas of the play. Their values are 25,000 ft for the Las Cruces 

(Potrillo or Mesilla) Basin, 14,000 ft for the Tularosa Basin, 7,500 ft for 

Otero Mesa, and 10,000 ft for the Jornado Del Muerto Basin.

To supplement the regional stratigraphic picture as presented in 

figure 18, appendices A and B are included for the reader who desires an 

understanding of local stratigraphic relationships and nuances. 

Geothermal Maturity

The plutonic and volcanic history and heat flow of south-central New 

Mexico are intimately linked to the subduction of the oceanic Farallon 

plate beneath the southwestern margin of the North American plate. The 

origin, composition, and timing of emplacement and extrusion of mid-to-late 

Tertiary igneous rocks, plus the tectonic relaxation which allowed magma to 

rise, are related to the direction of movement, subduction rate, subduction 

angle, and thermal stability of the descending slab.
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The depth of burial of potential reservoirs plus the relatively high 

geothermal maturity of rocks uplifted to the surface indicate that parts of 

the play are gas-prone. A preliminary thermal maturity analysis of Paleo 

zoic and Mesozoic outcrop samples by the author, using vitrinite reflec 

tance and conodont alteration indices (fig. 44), shows a relatively hot, 

arcuate trend (concave eastward) of mature to super-mature rocks with 

respect to the oil window. Computer-contoured data, from formerly deeply 

-buried Paleozoic strata, show an interpolation of high values over the 

Tularosa Basin, when in fact the Cenozoic alluvium is an area of no data. 

Maturity values along the Sacramento Mountains escarpment are consistently 

about 1.2 vitrinite reflectance equivalents (VR ). The western and nor 

thern thirds of the play are relatively cool with values of 0.6 to 1.2 VR . 

Upper Paleozoic strata buried within the deeper parts of the Tertiary 

basins will have higher thermal maturities, and hence be prone to generat 

ing greater amounts of associated gas (condensate or "wet gas"), and non- 

associated thermal ("dry") gas than heavy oil given the same type of kero- 

gen, presumedly mostly type II..

Present-day geothermal gradients, according to DeFord and Kehle 

(1976), are between 1.0-1.4 °F/100 ft. (18.2-25.7 °C/km) in the south 

eastern play, and 1.2-1.9 °F/100 ft. (21.9-34.8 °C/km) in the northwest. 

Nathenson and others (1983) have shown a fairly uniform increase in the 

temperature gradient from about 1.37 to 2.20 °F/100 ft. (25-40 °C/km) from 

the southeastern to the northwestern corners of the play, respectively 

(fig. 48). Gradient data (Kron and Stix, 1982) in units of °F/100 ft. 

(°C/km) show these ranges: 1.20-1.58 (22.0-28.8) in the north; 1.55-2.09 

(28.6-38.0) in the northwest; 1.45-1.75 (26.5-31.9) in the west-central 

part; 1.66-2.21 (30.54-40.1) in the south-central part; 1.48-1.71 

(26.9-31.2) in the southwest (one highly anomalous value is 73.0 C/km);
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1.20 (22.0) in the southeast; and, 1.65 (30.4) in the northeast.

Present-day heat flov and areas of known geothermal resource areas 

(KGRA) have been mapped by Warren and others (1969), Thompson and Burke 

(1974), Reiter and others (1975), Sass and others (1976), Grim (1977), 

Blackvell (1978), Grant (1978), Reiter and others (1978), Edwards and 

others (1978), Grim and Berry (1979), Reiter and others (1979), Svanberg 

(1979), Guffanti and Nathenson (1980), Ikelman and Theberge (1980), 

Svanberg and Morgan (1980), and Sass and others (1981). Their data 

generally show an increase in heat flow from east to west, i.e. from 1.5 to 

2.5 heat flow units (HFUs) from the Sacramento Mountains to the Rio Grande 

River (fig. 45-47). In the southwestern sector of the play HFUs exceed 

2.5; here the area is classified as a major geothermal area and KGRA. 

Grim (1977) included a 3.10 HFU value in the volcanic-plutonic area of the 

Organ Mountains. Ranges of HFUs in specific regions of the play include: 

1.44-1.56 in the north; 2.20 in the northwest; 1.60-1.96 in the west- 

central part; 1.75-2.48 in the south-central part; 1.47-3.31 in the 

southwest; 2.0 in the southeast; and, 1.77 in the northeast. 

Source and Reservoir Rocks

Thick, abundant, Pennsylvanian brown-to-black carbonaceous shales 

(e.g., the Panther Seep Formation) are potential source rocks (Kottlowski 

and others, 1956; LeMone, 1985). Figure 25 shows these strata are up to 

1,500 ft thick. Secondary source rocks are inferred to be the dark, 

basinal Devonian shales up to 170 ft thick, such as the "Percha Shale" as 

described by Sorauf (1984) in the southern play area; equivalent units are 

the Onate, Sly Gap, Contadero, Thoroughgood, and Rhodes Canyon Formations. 

Additionally, Mississippian and Permian shales and carbonates may 

eventually prove to be good source rocks. The porous dolomite and other 

carbonates of the Permian San Andres and Yeso Formations are of particular
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note for their bituminous content (Foster, 1978a).

Reservoir rocks are almost ubiquitous, but specifically include Per 

mian and Pennsylvanian bioherms and siliciclastic strata, Mississippian 

bioherms, and lastly, carbonates of Ordovician and Silurian ages to a 

lesser extent. Algal banks and bioherms (see Wray, 1962; Wilson, 1977) 

normally 75-100 ft thick in the Magdalena Group and Panther Seep Formation 

are potential reservoirs; they occur in the exposed parts of the Sacra 

mento, San Andres, Franklin, and Hueco Mountains (Seewald, 1975). Virgil- 

ian algal reefs up to 200 ft thick and possibly a mile wide have been des 

cribed in the Sacramento Mountains by Plumley and Graves (1953) and Bowsher 

(1986). Mississippian and Permian bioherms up to 350 ft thick, plus petro 

liferous Permian carbonates, have also been documented in the stratigraphic 

section, but they may have less porosity than the Pennsylvanian ones.

LeMone (1985) concluded the following relative to the Hueco Mountains: 

"The Pennsylvanian Magdalena Group has outstanding Morrow sand development 

as well as chaetetid biostromes and phylloid algal mounds which could 

develop into excellent reservoir rocks. Stromatolitic algae in this unit 

can act as both reservoir or source rock." In describing the Pennsylvanian 

Panther Seep Formation, Kottlowski (1975) has written, "Besides the 

southern thickening of the formation in the San Andres Mountains, the 

proportion of coarse clastic rocks decreases southward, reef-like limestone 

and associated grayish-black carbonaceous shale occur chiefly in the 

central part of Rhodes Canyon to Hembrillo Canyon, and gypsum beds with 

argillaceous calcilutite are the characteristic feature of the strata of 

San Andres Canyon. The biohermal-like limestone masses near Hembrillo 

Canyon may encircle the deeper part of the Orogrande basin, connecting as a 

reef-zone eastward with the Virgilian reefs in the Sacramento Mountains and 

arched south-southwest, south, and then southeastward to join the Virgilian
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reefs in the northern Hueco Mountains." Toomey and others (1977) have 

described in detail the Late Pennsylvanian carbonate-mound buildups 

(phylloid algae) classified as boundstone, packstone, and wackestone, which 

are exposed in the eastern play area. Mazzullo and Cys (1979) have 

similarly described Wolfcampian bioherms. Foster (1978a) also suggested 

that Virgilian reefs may ring the present-day Tularosa Basin, and noted 

there is excellent pay zone potential in the lower and middle Pennsylvanian 

deltaic facies of the northeastern part of the play area.

Thicknesses and General Facies

Mississippian strata generally thicken southward from an erosional 

edge in southeastern-most Socorro County to 500 ft in the Franklin 

Mountains (Armstrong, 1962; Armstrong and others, 1979; Armstrong and 

Mamet, 1979). Significant erosion, however, has also reduced thicknesses 

on the Pedernal uplands/Otero platform (fig. 19-21). Mississippian strata 

are argillaceous, nodular, cherty crinoidal to biohermal calcarenites and 

calcirudites plus calcareous siltstone and calcareous shale. Pennsylvanian 

strata are inferred to be thickest about 20-30 miles west of Alamagordo, 

NM.; they show rapid facies changes due to the terrigenous influx from the 

east. Pennsylvanian rocks include coarse arkosic sandstone, chert pebble 

conglomerate, red siltstone, dark shale, and cherty calcarenites and 

calcilutites. Thicknesses of Permian strata range from 2,500-3,000 ft in 

the south-central play area to 4,300-6,000 ft in the north to northeast. 

Permian rocks are also diverse lithologically; they include red beds, 

arkose, limestone conglomerate, siltstone, sandstone, cherty limestone, 

shaley carbonates, mudstone, marl, and evaporites. See Jordan (1971) for a 

detailed stratigraphic analysis.

Ranges of average thicknesses of the combined Mississippian, 

Pennsylvanian, and Permian strata include about 6,500 ft in the southern
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San Andres Mountains, 3,500 ft in the Franklin Mountains, 5,800 ft in the 

Hueco Mountains, A,000 ft in the Sierra Diablo Mountains, 5,750 ft in the 

Sacramento Mountains, 6,275 ft in the northern San Andres Mountains, and 

A,650 ft in the Carthage area. Excluding the addition of Cenozoic rock 

thicknesses, which can range from zero to 12,000 ft in the deepest part of 

the rift basins, the total stratigraphic section in the same locations as 

noted above are: 7,600-9,225 ft in the southern San Andres Mountains, 

7,800-8,100 ft in the Franklin Mountains, 6,000-10,600 ft in the Hueco 

Mountains, 8,265-12,900 ft in the Sierra Diablo Mountains, A,925-7,825 ft 

in the Sacramento Mountains, 7,000-7,250 ft in the northern San Andres 

Mountains, and 3,675-8,300 ft in the Carthage area. 

Traps and Seals

Individual traps are not identified in this synopsis, but abundant 

traps in Mississippian through Permian strata are present; traps are of 

the general types which include wedge-on-wedge (see cross-sections of 

Kelley and Furlow, 1965, Meyer, 1966, and Lane, 197A), stratigraphic 

pinchout, unconformity, biohermal, fault, and anticline. Common limestone- 

dolomite facies and porosity changes also enhance the potential of strati- 

graphically trapping hydrocarbons. Given that unconformities occur within 

every Paleozoic system, and together with the generally east-west 

stratigraphic thinning and thickening in Upper Paleozoic strata (see fig. 

59-63), numerous opportunities are available for trapping of hydrocarbons.

Structural complexity increases from east to west, i.e. from the 

Tularosa Basin to the Jornada del Muerto Basin. This complexity has both 

positive and negative consequences for the trapping of petroleum. Folding 

and faulting can create traps, however, late faulting can also rupture 

traps destroying any accumulations, i.e. after migration. Extensive 

faulting has increased the probability of high-pressure freshwater flushing
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(Bridges, 1984; DeJong, 1985), particularly in the Jornada del Muerto 

Basin. Potential Pennsylvanian reservoirs along the eastern edge of the 

Tularosa Basin may have been flushed by invasion of meteoric (fresh) water; 

however, other older reservoirs have produced highly saline water (McLean, 

1975). Howard and others (1978) and Seager (1980) reported on the exten 

sive array of "late faulting" (Quaternary pull-apart faults) found in the 

eastern part of this play. King and Harder (1985), however, stated, "In 

summary, despite flushing of some reservoirs, the stratigraphic section of 

the Tularosa Basin is favorable for oil and gas exploration because source 

beds and reservoir beds are abundantly present." Foster (1978a) suggested 

that due to the multiple episodes of faulting, younger oil may have 

migrated into older reservoirs or commingled with older oil.

Permian shales, such as present in the Yeso Formation, may act as 

seals for older reservoirs on the Otero platform. The question of whether 

effective seals are present, however, especially for gas, is unresolved. 

Depth of Occurrence

Pennsylvanian strata occur: 1) as outcrops exposed at 5,000-6,000 

ft elevation in the mountainous areas where their potential is greatly 

diminished, and 2) as highly potential reservoirs roughly -2,500 ft in the 

bolsons. Most hydrocarbon shows have been detected in the interval between 

2,430- and 8,600-foot top-depths (distance below kelley bushing). Gas 

shows, however, at 19,240 ft indicate there may be potential for thermal 

gas from this depth to 25,000 ft in the southwestern-most part of the play. 

Mississippian strata are generally 1,000-3,000 ft deeper than the Pennsyl 

vanian strata; Permian strata are generally 2,000-3,000 ft shallower. 

Oil and Gas Shows of the Orogrande Basin

Significant shows of oil and gas have been discovered in the play. 

For information on specific exploration wells, see Albright and others
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(1955), Kottlowski and others (1956), Cooley (1958), Kottlowski and others 

(1969), McCaslin (1974), Black (1975), Thompson and Bieberman (1975), 

Foster (1978a, b), Thompson and others, 1978, Pearson (1980), Tovar (1981), 

Thompson (1982), Woodward and Duchene (1982), Broadhead (1983), Brady 

(1984), Rowland (1985), King and Harder (1985), Lozinsky (1987). Hydro 

carbon shows in Pennsylvanian strata were notable in the following wells:

1) Exxon #1 Beard, sec. 5, T14S, RlE, 76 MCFGPD test at 7,200-7,430 foot 

top-depths;

2) Landreth #1 Federal, sec. 23, T4S, R6E, drilled on Oscura anticline 

east of San Antonio with oil and gas shows at 2,499-2,505 and 2,902- 

2,918 foot top-depths;

3) Grimm and others #1 Mobil, sec. 32, T25S, RlE, gas show at 19,015- 

19,240 foot top-depths;

4) Summit #1 Mims, sec. 2, T13S, R4W, gas shows at 5,708-5,800 foot 

top-depths;

5) Hodges #1 Houston, sec. 23, T14S, R10E, 16 MCFGPD test (98 percent 

methane) at 2,433-2,444 foot top-depths;

6) Southern Production #1 Cloudcroft, sec.5, T17S, R12E, oil and gas cut 

mud at 2,464-2,492 foot top-depths;

7) Houston #1 Lewelling, sec. 12, T12S, R9E, 430 MCFGPD test, 25/64" 

choke on July 6, 1974, at 8,000-8,016 foot top-depths and 12 MCFGPD 

at 8,572-8,598 foot top-depths, 82.3 percent methane and 15.9 percent 

carbon dioxide, testing of the higher interval 14 days after initial 

test yielded 168.3 MCFGPD; and

8) Snowden and Clary #1 State, sec. 36, T23S, R2E, oil and gas shows at 

2,540-2,560 foot top-depths.

Wells with significant hydrocarbon shows in Permian strata are as 

follows:
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1) Snowden and Clary #1 state, sec. 36, T23S, R2E, oil and gas at

553-573 foot top-depths, oil at 1,025-1,035 and 1,161 foot-top depths, 

and oil and gas at 1,492-1,518 foot top-depths;

2) Lockhart #1 Federal, sec. 28, T4S, R6E, oil show at 1,120-1,125 foot 

top depths;

3) Southern Tularsoa Basin #1, sec. 34, T13S, R8E, oil show at 1,638 foot 

top-depth;

4) Duggar #1 Federal, sec. 30, T6S, R10E, oil show at 476-489 foot 

top-depths;

5) Smith #1 Walker, sec. 21, T15S, RUE, gas show at 355 foot top-depth 

and oil show at 400 foot top-depth;

6) Turner #1 Evans, sec. 22, T24S, R12E, gas shows at 353, 410, and 1,086 

foot top-depths;

7) Houston #1 Lewelling, sec. 12, T12S, R9E, 13-18 MCFGPD test at 

5,140-5,170 foot top-depths; and,

8) Picacho #1 Armstrong, sec. 15, T23S, R1W, gas shows at 2,435 and 2,620

foot top-depths. 

Exploration Status and Brief Comparison to Delaware Basin

Because of the extensive Cenozoic cover and en echelon extensional 

faulting, outcrops are "jumbled" and fragmentary thus requiring much 

interpolation of subsurface stratigraphic and structural relationships by 

the explorationist.

In 1924 the first major oil was discovered in southern New Mexico. It 

was found in shallow Permian reservoirs at Artesia in Eddy County. Nearly 

half of the area of this play is military land which is condemned with 

respect to leasing and exploratory drilling for petroleum; the play is 

thus immaturely explored and considered a frontier area. About 65 wells 

have been drilled in the play; they have an average depth of about 4,250
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ft. Drilling density is about 155 square miles per borehole considering 

the entire play. This figure is reduced to about 145 square miles per well 

if the lowest priority areas are eliminated from consideration, e.g. the 

plutons and outcrops of uplifted Pennsylvanian and older strata. The 

deepest well (Grimm and others #1 Mobil), which is also the only well 

drilled deeper than 10,000 ft, was drilled and abandoned in 1973. Pene 

tration was to 21,759 ft where it bottomed in Upper Ordovician rocks in the 

Las Cruces (Potrillo or Mesilla) Basin in the southwestern corner of the 

play (sec. 32, T25S, R1E).

The nearest production of petroleum is east of this play in the Late 

Paleozoic basins of southeastern New Mexico and western Texas. Eight 

giant-sized oil and gas fields have been found in the Delaware basin of New 

Mexico and produce primarily from Permian carbonate reservoirs with anti 

clines and reefs as traps. The gas-prone northwestern shelf of the Dela 

ware basin looks stratigraphically similar (Upper Paleozoic analog) to the 

Orogrande basin. The Permian Basin petroleum province of New Mexico and 

West Texas contains an estimated ultimate in-place resource (discovered 

plus undiscovered) of more than 100 billion barrels of oil and 130 trillion 

cubic feet of natural gas (Dolton and others, 1979, p. 1, 14); about 71 

percent of the cumulative production has come from reservoirs of Permian 

age. These Permian reservoirs produce oil and associated/dissolved gas 

from depths of 1,000 to 10,000 ft; non-associated Permian gas is produced 

from depths of 500 to 7,000 ft (Dolton and others, 1979, p. 15).

During the Late Paleozoic, the Delaware and Orogrande basins were 

connected by common seaways; this relation should justify continued 

exploration in south-central New Mexico. These basins exhibit many of the 

same structural features and geologic history, and contain similar Upper 

Paleozoic reservoirs (Seewald, 1969; Horak, 1975; and, Pearson, 1980)
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where every Paleozoic system economically produces hydrocarbons (Dolton and 

others, 1979). One major difference, however, is the much greater water 

depth of the Delaware basin (? aulocogen, Walper, 1977, 1980) during the 

Late Paleozoic Era, and consequently its greater accumulation and preser 

vation of organic matter in a basin with over 25,000 ft of Paleozoic 

sediments. Over 70 percent of production from the Delaware basin is from 

Permian rocks, most of which is from Upper Permian strata. The Permian 

thickness in southeastern New Mexico is about 15,000 ft (McKee, 1967).

The Delaware basin was not significantly affected by the Laramide 

orogeny and subsequent Mid-Tertiary extensional deformation. The Delaware 

basin also has more effective seals for traps. Hydrocarbon generation in 

the Delaware basin occurred at three times: 1) during the Middle Ordovic- 

ian through Mississippian, 2) in Middle Pennsylvanian time, and 3) in Early 

and Middle Permian time (Hills, 1984). If generation has occurred in 

Pennsylvanian strata in the Orogrande basin play, it is likely to have been 

during the Permian, Late Cretaceous, and/or Middle Tertiary to Holocene. 

These intervals are based on achieving thermal maturity through deepest 

burial and proximity to heating processes or events. Several papers, such 

as Greenwood (1970), Bachman (1975), Horak (1975), Greenwood and Kottlowski 

(1975), and Greenwood and others (1977), have addressed both the issues of 

parallelism and dissimilarity among the southern New Mexico basins.

With sufficient subsurface exploration through modern geophysical 

methods and drilling, the potential of the Orogrande basin should be 

realized. The time required, however, to make commercial petroleum 

discoveries in the play could be protractive. This is due to the basin's 

low exploration intensity in an atmosphere of high risk-taking where so 

much of the land is military and hence non-leasable.
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APPENDIX A: COMPOSITE STRATIGRAPHIC SECTIONS AND CROSS-SECTIONS

The large size and geologic diversity of this play preclude detailed 
descriptions of all potential source and reservoir rocks. For reference, 
several composite stratigraphic columns, correlation charts, and 
cross-sections are presented here as figures 54-63; these show the 
nomenclature used in the various reference sections plus the lateral 
variations of major units. Also, see appendix B for the stratigraphic 
framework of these rocks in the seven key sections of the play.
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STRATIGRAPHY OF THE FRANKLIN MOUNTAINS, TEXAS

Geochronologic Chronostratigraphic Lithostratigraphic 
Units Units Units
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UJO5g
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_|0 
Ul
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RIPHEAN
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(UMon* 1962)

Figure 54 Stratigraphy of the Franklin Mountains, Texas. (From LeMone, 1984)
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Figure 59 Stratigraphic correlation of pre-Pennsylvanian strata from
the San Andres to Sacramento Mountains. (From Foster, 1978a)
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Figure 60 Stratigraphic correlation of Pennsylvanian rocks from the San 
Andres to Sacramento Mountains. (From Foster, 1978a).
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Figure 61 Stratigraphic correlation of Permian strata from the San Andres 
to Sacramento Mountains. (From Foster, 1978a).
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APPENDIX B: GENERAL STRATIGRAPHIC FRAMEWORK

The major stratigraphic units of each play with their generalized 
thicknesses and lithologies are listed below from oldest to youngest:

Cretaceous Coalbed Methane Play
Paleozoic units include: unconformably on Proterozoic granite and 

gneiss is the Abo Formation (600-800 ft) consisting of alluvial, fluvial, 
deltaic, and tidal flat red beds and evaporites, and in part equivalent to 
the Supai, Organ Rock, Cutler, Hermit and Earp formations elsewhere all of 
Early Permian age; the Yeso Formation (1,000-1,200 ft) consisting of mixed 
carbonates, elastics, and evaporites deposited as coastal dunes and in 
lagoons, sabkhas, and mud and sand flats, and in part equivalent to the 
lower DeChelly Sandstone and upper Supai Formation to the west and the 
Epitaph Dolomite to the south all of Early to Middle Permian age; the 
Glorietta Sandstone (150-250 ft) consisting of eolian sands near the 
shoreline of a shallow clastic shelf and equivalent in part to the upper 
DeChelly, Coconino, White Rim, Scherrer, and Toroweap formations elsewhere 
all of Middle Permian age; the San Andreas Limestone (250-350 ft) con 
sisting of fossiliferous shelf carbonates and evaporites and equivalent in 
part to the Kaibab Limestone, Concha Limestone, and Rainvalley Formation 
elsewhere all of Middle Permian age.

Strata of Mesozoic age include: the Chinle Formation (750-1,100 ft) 
consisting of mostly floodplain deposits of the ? Shinarump Conglomerate, 
? Monitor Butte, Petrified Forest, and ? Owl Rock members all of Late 
Triassic age; undifferentiated Upper Jurassic sandstones (0-250 ft but 
most likely 100 ft) of possible marine origin and possibly equivalent to 
the Morrison Formation; the Dakota Sandstone (30-100 ft, main body) mostly 
nonmarine, transgressive conglomerate, sandstone, shale, coal, and other 
carbonaceous deposits representing fluvial, floodplain, back-barrier bar, 
paludal, littoral and other marginal marine (brackish) settings of Late 
Cretaceous age; the Mancos Shale (500-850 ft) of marine shale, siltstone, 
and thin limestones with some sandstone lenses which include the marine Two 
Wells Tongue (5-50 ft) of the Dakota Sandstone, a clastic wedge called the 
Tres Hermanos Formation (lower part is the regressive-marine Atarque 
member, 50-100 ft thick, the middle part is carbonacous and nonmarine, 
100-170 ft thick, and the upper part is the transgressive-marine Fite Ranch 
member, 10-20 ft thick) all of Late Cretaceous age; the Mesaverde Group 
(625-1,650 ft) of Late Cretaceous age consisting of the: a) regressive 
Gallup Sandstone (190-330 ft, including Dilco coal beds of 50 ft and much 
carbonaceous elastics of fluvial origin) deposited in both nearshore 
littoral marine and nonmarine environments, b) the Crevasse Canyon 
Formation (100-200 ft) consisting of fluvial to marginal-marine deltaic 
elastics with the Gibson coal (60-75 ft), and c) the Menefee Formation 
(very thin to ? absent) consisting of nonmarine sandstone and paludal shale 
and coal. The total Cretaceous section is about 1,100 to 2,500 ft thick. 
Because of the constantly shifting shorelines and rapidly changing nature 
of the marine and nonmarine strata, complex intertonguing developed within 
the Mancos Shale and the Mesaverde Group; thus, correlations and 
nomenclature vary widely with different authors. The total Mesozoic 
section is 3,000-4,000 ft thick.

Cenozoic rocks include: the Baca Formation (about 325-450 ft) 
consisting of coarse alluvial fan elastics and perhaps minor finer-grained 
lacustrine elastics and fan deltas of Eocene age (Gather, 1983; Gather and
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Johnson, 1984); the Spears and Datil formations (300-350 ? ft) consisting 
of volcaniclastic and other clastic rocks of probable Oligocene age; 
unnamed andesite, basalt, volcanic breccia and tuff of ? Miocene and/or ? 
Pliocene age cap Cebollita Mesa; Quaternary alluvium and pyroclastics 
(variable and speculative thickness of 50-500 ft); and, Holocene basalt 
flows (50-300 ft, roughly estimated). Holocene basalt flows cover the 
stratigraphic section and because no oil or gas exploratory wells have been 
drilled in the play, subsurface mapping is an exercise in interpolation 
from the surrounding outcrops.

Late Paleozoic Orogrande Basin Play
The large size of this play requires that several geographically- 

spaced geologic columns be presented to adequately characterize and define 
the regional stratigraphic variations. Areas in or bordering the play 
where seven stratigraphic sections are described below include: the 
Franklin and Organ-Southern San Andres Mountains in the southwest, the 
Hueco Mountains-central Fort Bliss area in the south-central part, Sierra 
Diablo (Texas) in the southeast, the Sacramento Mountains in the east, the 
San Andres Mountains in the central region, and the Carthage area in the 
northwest. Nomenclature problems are widespread because of the difficulty 
in trying to correlate complex facies among widespread mountain ranges. 
Physical and biostratigraphic correlation methods are sometimes confused in 
naming units in the literature leading to splitting of units, i.e. a 
different set of formations names has evolved for each major stratigraphic 
section. Much of the information below is from Amer. Assoc. Petrol. Geol. 
(1983). A star (*) in the descriptions below indicates an erosional 
unconformity.

Franklin Mountains
The dominant lithologies include the following: intrusive granite 

plus metasediments and metavolcanics of Proterozoic age; * the Bliss 
Formation (0-300 ft) sandstone of Late Cambrian to Early Ordovician age; 
the El Paso Group (1,550 ft) carbonates of Early Ordovician age; * the 
Montoya Group (365 ft) of Late Ordovician age; the Fusselman Dolomite (550 
ft) carbonates of Early Silurian age; * the Canutillo Formation (250 ft) 
carbonates of Middle Devonian age; the Percha Shale (90 ft) carbonates of 
Late Devonian age; * the Las Cruces Formation (40-50 ft) carbonates, and 
the Rancheria Formation (375 ft) carbonates both of Middle Mississippian 
age; the Helms Formation (160 ft) shale of Late Mississippian age; the La 
Tuna Formation (160 ft) carbonates, the Berino Formation (380 ft) 
carbonates, and the Bishop Cap Formation (625 ft) carbonates all of Early 
Pennsylvanian age; * the Panther Seep Formation (? 475-600 ft) carbonates 
of Late Pennsylvanian age; * the Hueco Group (1,685 ft) carbonates of 
Early Permian age consisting of the Hueco Canyon Formation (605 ft), the 
Cerro Alto Limestone (460 ft), and the Alacran Formation (620 ft); * 
undifferentiated sandstone, shale, and limestone (1,570 ft) of late Early 
to early Late Cretaceous age; * the Fort Hancock Formation (unknown 
thickness) shale of Pliocene age; and, * undifferentiated bolson-fill and 
other Quaternary alluvium mostly of sand and gravel (0-9,000 ft).

Organ and Southern San Andres Mountains
The predominate lithologies include the following: gneiss, schist, 

and intrusive granite of Proterozoic age; * the Bliss Formation (125-145 
ft) glauconitic sandstone of Late Cambrian to Early Ordovician age; the El 
Paso Group (780-1,000 ft) carbonates of Early Ordovician age; * the
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Montoya Group (365-470 ft) carbonates of Late Ordovician age; the 
Fusselman Dolomite (110-310 ft) carbonates of Early Silurian age; * the 
Percha Shale (60-170 ft) dark basinal shale of Middle and Upper Devonian 
age; * the Caballero Formation (5-30 ft), * the Lake Valley Formation 
(5-180 ft), * the Las Cruces Formation (0-125 ft), and the Rancheria 
Formation (170-265 ft) all consisting of carbonates of Mississippian age; 
* the Helms Formation (0-130 ft) shale of Late Mississippian age; * the 
Lead Camp Limestone (650-870 ft) carbonates of Pennsylvanian age; the 
Panther Seep Formation (2,035 ft) shale of Late Pennsylvanian age; the 
Hueco Formation (1,675-1,875 ft) carbonates, and the Abo Sandstone (400 
ft) sandstone both of Early Permian age; the Yeso Formation (300 ft) 
carbonates of Early to Middle Permian age; the San Andres Formation (550 
ft) of Middle Permian age; * the Sarten-Dakota formations (360 ft) 
sandstone of late Early to early Late Cretaceous age; the Mancos Shale 
(1,000 ft) shale with stray sands; * the Love Ranch Formation (0-2,000 
ft) conglomerates of Paleocene age; * undifferentiated andesites, tuffs, 
rhyolites and lavas (up to 12,000 ft with over 5,000 ft as graben-fill in 
the Rio Grande Rift) of Eocene to Early Miocene age; * undifferentiated 
alluvial sandstones (unknown thickness) of Quaternary age.

Hueco Mountains - Central Fort Bliss Military Reservation Area
The dominant lithologies and ages include the following: Proterozoic 

granite and metasedimentary rocks; * the Bliss Formation (100-250 ft) 
sandstone of Upper Cambrian age; El Paso Group (420-1300 ft) cherty 
dolomite with some siltstone and sandstone of Early Ordovician age; * The 
Montoya Group (400-500 ft) cherty dolomite with some basal sandstone of 
Late Ordovician age; * the Fusselman Dolomite (95-540 ft, probably 250-325 
ft most commonly) cherty dolomite of Silurian age; * the Onate Formation 
(0-60 ft) siltstone, shale, and calcareous elastics, * the Sly Gap 
Formation (0-45 ft) fine elastics, and the Contadero-Percha Shale (60-130 
ft) black shale with siltstone all of Devonian age; * the Caballero 
Formation (30 ft) dolomite with siltstone and , the Las Cruces Formation 
(80 ft) carbonates, the Rancheria Formation (280 ft) biohermal, cherty 
carbonates, the Helms Formation (140 ft) cherty carbonates with siltstone 
and shale all of Mississippian age; * the Gobbler-La Tuna formations (280 
ft) carbonates, the Magdalena Group (700-1,000 ft) mixed cyclic biohermal 
carbonates and elastics consisting of the Berino member (525 ft) carbonate 
and shale, and the Bishop Cap member (200-300 ft) shale and cherty 
carbonate; the Panther Seep Formation (475-800 ft) algal and biohermal 
carbonates, shale, sandstone, and siltstone all of Pennsylvanian age; * 
the Hueco Group (1,500-2,700 ft) cherty biohermal carbonates consisting of 
the Powwow member (20 ft), the Hueco Canyon member (600 ft), the Cerro Alto 
member (460 ft), and the Alacran Mountain member (625 ft) all of Early 
Permian age; the (?) Abo Formation (thin if present); the Yeso Formation 
(400-500 ft) carbonates, elastics, and evaporites of Early Permian age; 
the (?) Glorieta Sandstone (thin if present); the San Andres Limestone 
(200 + ft) carbonates of Middle Permian age; * the Dakota Sandstone (? 200 
ft) sandstone of "middle" Cretaceous age; the Eagle Ford-Mancos formations 
(? 0-1,350 ft) of sandstone, siltstone, and dark shale of Late Cretaceous 
age; the Mesaverde Group (unknown thickness) of elastics of Late Creta 
ceous age; * undifferentiated rhyolites, tuffs and other volcaniclastics 
(0-1,000 ft) of middle Tertiary age; and, * undifferentiated alluvial 
basin fill (0-2,000 ft) coarse elastics of Quaternary age. The maximum 
thickness of bolson fill in the Tularosa Basin has been estimated at about 
8,000 ft by Keller and others (1984).

132



Sierra Diablo
The dominate lithologies and their ages include the following: 

Igneous intrusions and metasedimentary and metavolcanic rocks of Protero- 
zoic age; * the Bliss Formation (100-200 ft) sandstone of Early Ordovician 
age; the El Paso Group (1,150 ft) carbonates of Early Ordovician age; * 
the Montoya Group (230-450 ft) carbonates of Late Ordovician age; the 
Fusselman Dolomite (300-450 ft) carbonates of Early Silurian age; * 
unnamed chert (125 ft) of Late Devonian age; * the Barnett Shale (135 ft) 
shale of Late Mississippian and Early Pennsylvanian age; * undifferenti- 
ated carbonates (unknown thickness) of (?) Late Pennsylvanian age; * the 
Hueco Formation (300-1,500 ft) carbonates, * the Bone Spring Limestone 
(900-1,300 ft) carbonates, the Victoria Peak Limestone (900-1,500 ft) 
carbonates, the Cutoff Shale (275 ft) shale, the Brushy Canyon Formation 
(unknown thickness) sandstone, and the Cherry Canyon Formation (150-200 ft) 
sandstone all of Early Permian age; the Goat Seep Limestone (200+ ft) 
carbonates of Middle Permian age; * undifferentiated carbonates and 
siliciclastics (2,000-3,925 ft) of Early Cretaceous age; * the Eagle Ford 
Formation (1,500 ft) shale of Late Cretaceous age; * undifferentiated 
sandstones and volcanic rocks of unknown thickness and Pliocene and 
Quaternary age.

Sacramento Mountains
The major mapped units with their approximate thicknesses, dominant 

lithologies, and ages include the following: quartzite and other 
metasedimentary rocks of Proterozoic age; * the Bliss Formation (110 ft) 
sandstone of Late Cambrian and Early Ordovician age; the El Paso Formation 
(425-450 ft) carbonates of Early Ordovician age; * the Montoya Group (225 
ft) carbonates of Late Ordovician age; the Valmont Dolomite (185 ft) 
carbonates of Late Ordovician-Early Silurian age; the Fusselman Dolomite 
(20-100 ft) carbonates of Early Silurian age; * the Onate Formation (10-70 
ft) shale of Middle Devonian age; the Sly Gap Formation (30-40 ft) shale, 
* the (?) Percha Shale (10-20 ft) shale, and the Caballero Formation (15-60 
ft) carbonates all of Late Devonian age; * the Lake Valley Formation (400 
ft) biohermal carbonates of Early Mississippian age; * the Rancheria 
Formation (0-300 ft) carbonates of Middle Mississippian age; the Helms 
Formation (0-60 ft) shale of Late Mississippian age; * the Cobbler 
Formation (1,200-1,600 ft) shale, sandstone, and cherty carbonates of 
Early-Middle Pennsylvanian age and consisting of a lower Bug Scuffle member 
(840 ft) carbonate; the Beeman Formation (0-500 ft) biohermal algal mound 
carbonates, shale, and sandstone, and the Holder Formation (300-900 ft) 
carbonates with algal reefs both of Late Pennsylvanian age; * the Bursum 
Formation equivalent to the Laborcita Formation (335 ft) shale, the Abo 
Formation (250-500 ft) shale, siltstone, and red beds, and the Yeso 
Formation (1,200-1,800 ft) mixed carbonates, siltstone, evaporites, and 
marl all of Early Permian age; the San Andres Formation (200-700 ft) 
carbonates of Middle Permian age; * the Dakota Sandstone (0-200 ft) 
sandstone of early Late Cretaceous age; * undifferentiated sandstones (up 
to 1,800 ft) of Neogene age.

Northern San Andres Mountains and Central Jornada del Muerto Basin
From oldest to youngest the major mapped units with their approximate 

thicknesses, dominant lithologies, and ages include the following: 
Proterozoic granite; * the Bliss Formation (50 ft) sandstone of Late 
Cambrian-Early Ordovician age; the El Paso Formation (300 ft) carbonates 
of Early Ordovician age; * the Montoya Group (325 ft) carbonates with 
basal sandstone of Late Ordovician age; * the Onate Formation (30 ft)
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shale of Middle Devonian age; the Sly Gap Formation (30 ft) shale, the 
Contadero Formation (5 ft) shale, and the Percha Formation (75 ft) shale 
all of Late Devonian age; * the Lake Valley Formation (65 ft) carbonates 
of Early Mississippian age; * the Pennsylvanian Magdalena Group can be 
divided into the Derry Series equivalent (230 ft) sandstone; * the 
DesMoinesian Series equivalent (625 ft) carbonates; the Missourian Series 
equivalent (195 ft) carbonates; the Panther Seep Formation (1,450 ft) 
shale of Late Pennsylvanian age; * the Bursum Formation (265 ft) reef-like 
carbonates with siliciclastics, the Hueco Formation (420 ft) carbonates, 
the Abo Formation (835 ft) fine-grained clastic red beds, the Yeso 
Formation (1,580) sandstone, the Glorieta Sandstone (210 ft) sandstone, and 
the San Andres Formation (395 ft) carbonates all of Early Permian age; * 
the Dockum Formation (50 ft) shale of Triassic age; * the Dakota Sandstone 
(40+ ft) of early Late Cretaceous age; the McRae Formation (0-500 ft) of 
Late Cretaceous-Early Tertiary age; * undifferentiated basin-fill sand 
stones and other alluvium (thickness highly variable) of Quaternary age.

Carthage Area (Northern Jornada del Muerto Basin)
The major mapped units with their approximate thicknesses, dominant 

lithologies, and ages include the following: Proterozoic granite; * the 
Sandia Formation (15-635 ft) sandstone* and the Hadera Limestone (80-1,660 
ft) carbonates both of Pennsylvanian age; * the Bursum Formation (90-250 
ft) sandstone and reef-like carbonates, and the Abo Formation (300-790 ft) 
sandstone, the Yeso Formation (720-1,700 ft) sandstone, evaporites, and 
shale, the Glorieta Sandstone (30-200 ft) sandstone, and the San Andres 
Formation (270-400 ft) carbonates all of Early Permian age; * the Dockum 
Group (0-500 ft) sandstone of Triassic age; * the Dakota Sandstone (75-90 
ft) medium-grained quartz sandstone, the Mancos Shale (975 ft which 
includes about 260 ft of sandstone) shale and sandstone (Tres Hermanos and 
D-Cross), the Gallup Sandstone (65 ft) sandstone, and the Crevasse Canyon 
Formation (650-1,040 ft) sandstone and other siliciclastics and coal all of 
Late Cretaceous age; * the Baca Formation (? 750-1,025 ft) coarse to fine 
siliciclastics of Eocene age; * volcaniclastic and alluvium (thickness 
unknown) of Oligocene age; * the Santa Fe Group (up to ? 2,000 ft) allu 
vial elastics with sills and dikes all of Miocene-Pliocene age; * undif 
ferentiated basin-fill elastics of variable thickness and Holocene age.
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